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Abstract

Since 2001, actor-critic algorithms have combined “the strong points of actor-only and critic-
only methods” (Konda & Tsitsiklis, 1999) to reduce the time needed to train a reinforcement
learning neural network. The REProductive NETwork architecture, REPNET1, uses a custom
data structure built on top of this idea to train networks in significantly less time. During train-
ing, the models in REPNET (called branches) can reproduce, rewarding models that achieve a
high running reward change. Branches can also be pruned due to a lack of reproduction, penalizing
stagnant branches. These branches are contained in the custom recursive data structure of REP-
NET. Through the use of automatic add-ons such as Adaptive Pruning Time Adjustment (APTA)
and Auto-Generating Nonlinear Reproduction Threshold Functions, these hyperparameters can be
tuned without human input. After training the neural network on OpenAI’s “CartPole” environ-
ment, REPNET reduced the mean of the training episodes by 29.3% and the standard deviation of
episodes by 72.62%. Overall, REPNET made reinforcement learning training significantly faster
and less variable in comparison to its actor-critic counterpart. Decreasing the training times of
reinforcement learning neural networks can accelerate progress in AI research, leading to faster
development of technologies that can improve various aspects of the world, from healthcare to
environmental sustainability.

1 Introduction

A. Experimental Problem - How can the number of episodes required to train a reinforcement learning
model be decreased to improve training efficiency?

B. Hypothesis/Engineering Goal - Implementing REPNET through a recursive tree data structure
and series of actor-critic models will decrease the number of episodes required to reach a running
reward threshold in comparison to a singular actor-critic model.

C. Rationale - With an increase in the complexity of tasks being solved by machine learning, the
training times and computing resources needed to train these models are increasing as well.
However, these models can take a significant amount of time to train despite running on state
of the art machines, due to the sheer number of parameters in the model to tweak. REPNET
is a way to substantially reduce reinforcement learning training times and decrease the amount
of training episodes needed to achieve a minimum running reward (i.e. “solving” the task).
REPNET performs this through a custom tree data structure containing branches, each with its
own model. REPNET applies a dual-sided evolutionary pressure of reproduction and pruning on
each branch to select the best possible model from the data structure’s active models. Beyond the
base implementation, add-ons such as the Adaptive Pruning Time Adjustment (APTA) system
and Auto-Generating Nonlinear reproduction threshold functions reduce sources of human error,
making them more predictable. These improvements in Reinforcement Learning will allow models
to be trained faster, resulting in more research and development in the field of machine learning.

1This is different from Google’s RepNet, which is based on ResNet and used for analyzing repetition in videos.
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2 Literature Review

2.1 Overview

To create this project, the author used the software library TensorFlow (Abadi et al., 2016) to
construct the reinforcement learning neural networks. Other libraries such as PyTorch offer similar
functionality, but the author is most familiar with TensorFlow due to the wide influence it has.

OpenAI’s Gym library (Brockman et al., 2016) was used to create an environment to test REPNET
in. CartPole was the specific environment used to test REPNET, due to its simple nature. CartPole
requires the agent to balance a pole to within a certain angle range by moving a cart on the floor. The
cart is additionally required to stay within a distance from the origin.

Research done on the soft actor critic approach to reinforcement learning (Christodoulou, 2019)
was used to demonstrate additional optimizations that could be made to the actor-critic reinforcement
learning model.

Long Short Term Memory (Hochreiter, n.d.) is an optimization that can be applied to recurrent
neural networks that has a similar concept to REPNET. LSTM creates both long-term and short-
term memory through a series of activation functions for the task of sequence prediction. Similarly,
REPNET uses the Adam optimizer to make short-term improvements in each branch, while the process
of pruning and branch reproduction emphasizes effective long-term trends.

Among many optimizers, Adam (Kingma & Ba, 2014) was used to perform the gradient descent
adjustments in the neural network is critical to decreasing training times in comparison to other
optimizers like Momentum, Gradient Descent, or Adadelta. Adam overall has faster computation time
and requires fewer parameters for tuning, making it ideal.

The actor-critic network structure (Konda & Tsitsiklis, 1999) is what was used as the baseline for
testing REPNET and how each branch node trains. Deep Q Networks are the other main type of
reinforcement learning neural networks, but were not used due to the nature of their construction.

Deep reinforcement learning has been tested on many different games or simplified environments,
such as playing Atari games (Mnih et al., 2013), and provides a representation of how the network will
perform on a larger scale or different reinforcement learning application.

Distributed reinforcement learning is available (Ong, Chavez, & Hong, 2015), however it uses deep
Q-networks that determine future rewards from many (or all) possible actions the agent can take. This
can oftentimes be a large group of tasks, and so is easily distributed across multiple processors/threads.
However, actor-critic algorithms are not easily distributed as they attempt to find the most optimal
policy directly.

Reinforcement learning is used in many different applications such as vision-based robotics (Wang,
Vasan, & Mahmood, 2022) and adaptive traffic signal control (Abdulhai, Pringle, & Karakoulas, 2003),
and it is important to note the importance it plays in the machine learning scene.
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2.2 An Applied Introduction to Machine Learning

Neural networks, initially invented in 1958 (Rosenblatt, 1958), have taken the world by storm
through their wide range of applications, incredible versatility, and surprising accuracy. They have
enabled everything from smart thermostats to vision-based robotics (Wang et al., 2022), and become
an integral part of our society.

Neural networks are often used for statistical analysis and data modelling, in which their
role is perceived as an alternative to standard nonlinear regression or cluster analysis tech-
niques. (Gurney, 2018)

A simple fully-connected neuron is seen below:

Figure 1: A basic neuron, comprising of a series of inputs, weights, an activation function a(x), and
the end result ŷ

It takes in a set of inputs, either as network inputs or the outputs of a previous layer of neurons,
multiplies each input by a weight adjusted using a feed-forward algorithm. The weighted inputs are
then summed and then applied through an activation function. The activation function creates an
output (ŷ) based on the specified input; two common activation functions are the sigmoid and tanh
functions:
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After running the model on a set of input data, the loss function then returns a numerical value
describing how got a set of input weights W are, given loss function J. The loss function used for this
project was the Mean Squared Error, as seen below:

J(W) =
1

n

n∑
i=1

(yi − f(xi;W))2

The first term used in the loss function inside of the summation is the matrix of labels yi, or actual
values the network should have returned. The second term is the matrix of resultant values after
training the neural network based on the matrix of inputs xi and weights W.

The idea is to then minimize J(W) in the following way:

W∗ = argminW(J(W))

Based on this loss, the network can then perform gradient descent to update each of the individual
weights on the following algorithm:

Algorithm 1 Basic Gradient Descent Algorithm

W← N(O, σ2) ▷ Weights are randomized initially
while J(W) ≤ τ do ▷ Repeat until the loss decreases past a threshold τ

G = ∂J(W)
∂W ▷ Compute the partial derivative of each weight, how each weight affects the loss

W←W− ηG ▷ Update the weights by subtracting the partial derivatives times a learning rate
end while

In this way, a neural network can approximate an output function for each given set of inputs,
the complexity of which depends on how many neurons and what kind of activation functions they
have. These networks are commonly used for classification, but this paper focuses on one type of
reinforcement learning, where the input to the neural network is a set of observations in an environment
and the output is the action the network takes.
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3 Procedure

3.1 Hypothesis/Engineering Goal

Implementing REPNET through a recursive tree data structure and series of actor-critic models
will decrease the number of episodes required to reach a running reward threshold in comparison to a
singular actor-critic model.

3.2 Location of Experiment

3903 Simon Ridge Court, Cedar Park TX 78613

3.3 Materials

1. Computer

3.4 Procedures

1. Construct the recursive tree data structure

2. Test the data structure to ensure proper operation

3. Construct the basic actor-critic model

4. Test the actor-critic model and determine the baseline number of episodes required to achieve
the minimum running reward threshold across 100 trials

5. Integrate the basic actor-critic model and the data structure to create the linear reproduction
threshold REPNET

6. Test the linear reproduction threshold REPNET model and determine the number of episodes
required to achieve the minimum running reward threshold across 100 trials

7. Compare the mean and standard deviation of the linear reproduction threshold REPNET with
the mean and standard deviation of the basic actor-critic model.

8. Construct various improvements to REPNET by editing the basic REPNET architecture.

9. Test the improvements and determine the mean number of episodes required to achieve the
minimum running reward threshold across 100 trials for each.

10. Compare the mean and standard deviation of the REPNET variants with the mean and standard
deviation of the basic REPNET and actor-critic model.

11. Compile findings and determine if REPNET and its variants yielded an improvement.
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4 Analysis

4.1 CartPole Data Analysis

As a practical demonstration of the improvement REPNET offers upon the actor-critic architecture,
it performed against a separate actor-critic architecture. Both were designed in TensorFlow (Abadi
et al., 2016), which has been used to find the optimal policy for many games (Mnih et al., 2013).
This architecture uses one model and one Adam optimizer (Kingma & Ba, 2014) with a learning rate
of 0.01. The environment of choice was OpenAI’s CartPole environment (Brockman et al., 2016),
an important baseline used in the field of Reinforcement Learning. In this environment, the actor is
required to keep a pole balanced on top of a cart which can move left and right through the actor’s
actions, while staying in a certain range of the origin. The pole is subject to gravity, and if the pole
falls below a certain angle, then the actor loses. REPNET used a pruning hyperparameter of 100
subsequent weight updates and a constant reproduction threshold function of 75.

T (P ) = 75 (1)

For this model, if the improvement in running reward is greater than 75 between any two instances, a
new branch will be created. Like the normal actor-critic architecture, REPNET used Adam optimizers
with a learning rate η of 0.01. Both architectures used a γ (discount factor) of 0.99. The reward
threshold τ was 195, such that the model is considered trained after the running reward is greater
than or equal to 195. After 100 pairs of networks were run, the results were as below:

Table 1: Normal Actor-Critic Network versus REPNET
Network Mean Number of Episodes Standard Deviation of Episodes

Actor-Critic 255.49 163.67
REPNET 200.57 44.27

Compared to the normal actor-critic method, the results show a 21.5% improvement in the mean
and a 72.95% improvement in the standard deviation. These results therefore indicate that REPNET
provides a model that is quicker to train and more consistent when training. A representative training
session for REPNET and the normal actor-critic architecture is provided below for clarity:
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Figure 2: A representative training session of REPNET versus the normal actor-critic RL architecture.
Note that the same seed (100) was used for both instances.
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REPNET was trained on CartPole with a variety of hyperparameter combinations, from 5 to 100 in
steps of 5 for both the pruning time and constant reproduction threshold function. The corresponding
color map, with the brightest colors training in the fewest number of episodes, is seen below.

Figure 3: A color map of common training combinations for REPNET.
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4.2 Nonlinear Reproduction Threshold Functions with CartPole

The previous reproduction threshold functions used to control the branch creation of REPNET have
been horizontal constants. However, the change in running reward over time increases substantially
as the running reward increases, until training halts. Further and further along into training, there’s
fewer reasons to create more branches due to the increasing change in running reward. This increase
in the change in running reward, also creates more and more branches, creating dead weight in the
network. This problem can be solved by implementing reproduction threshold functions like the one
below. These functions take the current running reward and determine the minimum change in running
reward necessary to create a new branch.

T (P ) =
P 2

100
+ 20 (2)

However, the manual creation of a reproduction threshold function can lead to an increase in the loss
of the network if improperly tuned. To avoid this, an auto-generating reproduction threshold function
was constructed as seen below. τ0 is the starting running reward, or the approximate performance of
the model with randomized weights, and τ1 is the running reward threshold to consider the environment
solved.

T (P ) =
−τ1τ0
P − τ1

(3)

Creating a function like this does two things:

1. Making the change in running reward approach an asymptote prevents the creation of new
branches once the network has ”almost figured it out”. Due to the nature of policy recognition,
this pattern always occurs, assuming the optimal policy is achievable. Normally, the high change
in running reward during this time with a constant reproduction threshold causes many new
branches to be created, which increases the overall number of episodes that must be trained. So,
removing this dead weight can improve training time significantly. An example auto-generated
reproduction threshold function graph is provided below. It’s important to note that as the
input to the reproduction threshold function is the current running reward, this approach works
regardless of the length of training time in episodes.

2. Making more branches towards the start increases the variety of solutions in future episodes, as
those initial children of the main branch have time to settle into different minima. This increases
the likelihood of a quicker training time and increases the redundancy this architecture affords.
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Figure 4: An auto-generated reproduction threshold function based on environment parameters spec-
ified.

This auto-generated nonlinear reproduction threshold function was trained 100 times on the Cart-
Pole environment, with the statistical results below:

Table 2: The normal Actor-Critic network, REPNET, and Auto-Generating Nonlinear Reproduction
Threshold Function, across 100 trials each

Network Mean Number of Episodes Standard Deviation of Episodes
Actor-Critic 255.49 163.67
REPNET 200.57 44.27

Nonlinear Threshold REPNET 180.62 44.81
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The histogram of these trials can be seen below.

Figure 5: A histogram based on 100 training sessions of the nonlinear reproduction threshold function
REPNET.

After testing the auto-generated reproduction threshold function across 100 training sessions, it
decreased the training time by 10.24% when compared to the default REPNET (using the same
pruning time hyperparameter) and 29.3% compared to the normal actor-critic approach.
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4.3 Adaptive Pruning Time Adjustment (APTA) with CartPole

APTA is a powerful add-on tool that removes human error with regard to the pruning time param-
eter. When paired with the auto-generating nonlinear reproduction threshold function, this version of
REPNET only one additional hyperparameter compared to the normal actor-critic models.

APTA uses a pre-tuned PID controller to attempt to stabilize the number of branches towards a
target amount of branches per branch using the following control function.

u(t) = KP e(t) +KI

t∑
i=1

e(i) +KD(e(t)− e(t− 1)) (4)

where,

u(t) PID control variable, the change to the pruning time parameter
KP Proportional gain
e(t) Measured error at episode t between the desired and actual number or growth rate of the number of branches
KI Integral gain
KD Derivative gain
t A discrete variable representing episode number (t ∈ N0)

This hyperparameter is much easier to determine, as it is directly proportional to the number of
branches in the tree. A figure showing the benefit APTA adds is provided below.

Figure 6: Training APTA on CartPole, viewing the running reward over episodes (top plot) and
pruning time hyperparameter (bottom plot)

This network was initialized with a pruning time hyperparameter of 80, which is significantly sub-
optimal for the CartPole environment. A REPNET using a constant pruning time hyperparameter
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would create far more branches than need be, slowing the training of the network. The APTA PID
catches this sub-optimal ballooning, and drops the pruning time to approximately 55. In this state,
the child branches over time are creating fewer and fewer branches, and so to prevent the network from
pruning all of its branches, the pruning time hyperparameter is gradually increased back to 80. This
process repeats several times to maintain the specified number of branches, and the network trains in
approximately 170 episodes.
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Below is the updated table with APTA’s performance compared to the other network variants,
based on 100 trials on the CartPole environment:

Table 3: The normal Actor-Critic network, REPNET, Auto-Generating Nonlinear Reproduction
Threshold Function, and APTA networks, across 100 trials each

Network Mean Number of Episodes Standard Deviation of Episodes
Actor-Critic 255.49 163.67
REPNET 200.57 44.27

Nonlinear Threshold REPNET 180.62 44.81
APTA 195.81 45.78

A histogram is also provided for reference to the distribution of training times:

Figure 7: A histogram of training REPNET on CartPole across 100 trials.

Across the 100 trials, APTA had a 2.37% decrease in training times compared to the default
REPNET, however it performed 8.41% worse than the manually controlled nonlinear reproduction
threshold REPNET. This is likely due to the local minimas present in the optimization function,
resulting in longer training times.
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To determine whether or not APTA performed worse than the strict Auto-Generating Nonlinear
Reproduction Threshold REPNET, a 2-Sample T-Test was performed:

i. 2-Sample T-Test
µ1 = true mean number of training episodes for the nonlinear reproduction threshold REPNET without APTA
µ2 = true mean number of training episodes for the nonlinear reproduction threshold REPNET with APTA
x̄1 = 180.62, Sx1 = 44.81, x̄2 = 195.81, Sx2 = 45.78, df = 197.91, n = 100
H0 : µ1 = µ2, Ha : µ1 ≤ µ2

ii. Randomization is present due to the pseudo random number generator used to seed the network.
As the size of both random samples was 100 and therefore ≥ 30, the sample sizes are sufficiently
large enough to guarantee normality through the Central Limit Theorem. Due to the near infinite
variation that training a network provides, it is safe to assume there are more than 100·10 = 1000
possible training instances in the population of training sessions for both variations of REPNET
on the CartPole Environment.

iii.

t =
x̄1 − x̄2√
sx2

1

n +
sx2

2

n

=
180.62− 195.81√

44.812

100 + 45.782

100

= −2.3712

df = 197.91, p-value = 0.00934, α = 0.05

iv. The author rejects H0 because the p-value ≤ α. There is enough statistically significant evidence
to conclude the true mean number of training episodes for the nonlinear reproduction threshold
REPNET without APTA is less than with APTA.

Although the mean training times decrease in comparison to the arbitrary pruning time in the
example above, it still is a significant improvement compared to the default REPNET and, given the
additional security given to training resources, it is a valuable tool and should not be overlooked when
training REPNETs.
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4.4 Statistical T-Interval Analysis

Raw statistical sample data can often misrepresent the true parameters of a population, in this
case the true mean number of episodes required to train REPNET and its variants. In order to avoid
statistical confusion, confidence intervals for the two main REPNET variants were established. A
confidence level of 90% was used for each interval, indicating that 90% of intervals constructed from a
sample of the same size n would contain the true mean population parameter.

4.4.1 Nonlinear Reproduction Threshold REPNET

To analyze the result of the auto-generated reproduction threshold function with REPNET, a
t-interval test was performed using a confidence interval of 90%.

i. µ = the true mean of the number of episodes required to train the nonlinear reproduction
threshold REPNET on the CartPole environment.
x̄ = 180.62, t∗ = 1.660, Sx = 44.81, n = 100

ii. Randomization is present due to the pseudo random number generator used to seed the network.
As the size of the random sample was 100 and therefore ≥ 30, the sample size is sufficiently
large enough to guarantee normality through the Central Limit Theorem. Due to the near
infinite variation that training a network provides, it is safe to assume there are more than
100 ·10 = 1000 possible training instances in the population of training sessions for the nonlinear
reproduction threshold REPNET on the CartPole environment.

iii.

I = x̄± t∗ · Sx√
n

(5)

= 180.62± 1.660 · 44.81√
100

= (173.18, 188.06)

iv. The author is 90% confident that the mean number of episodes required to train the nonlinear
reproduction threshold REPNET on the CartPole environment is between 173.18 and 188.06.
All conditions for accuracy were met.

4.4.2 Nonlinear Reproduction Threshold REPNET with APTA

To analyze the result of the auto-generated reproduction threshold function with REPNET with
APTA, a t-interval test was performed using a confidence interval of 90%.

i. µ = the true mean of the number of episodes required to train the nonlinear reproduction
threshold REPNET with APTA on the CartPole environment.
x̄ = 195.81, t∗ = 1.660, Sx = 45.78, n = 100

ii. Randomization is present due to the pseudo random number generator used to seed the network.
As the size of the random sample was 100 and therefore ≥ 30, the sample size is sufficiently
large enough to guarantee normality through the Central Limit Theorem. Due to the near
infinite variation that training a network provides, it is safe to assume there are more than
100 ·10 = 1000 possible training instances in the population of training sessions for the nonlinear
reproduction threshold REPNET with APTA on the CartPole environment.

iii.

I = x̄± t∗ · Sx√
n

(6)

= 195.81± 1.660 · 45.78√
100

= (188.21, 203.41)

iv. The author is 90% confident that the mean number of episodes required to train the nonlinear
reproduction threshold REPNET with APTA on the CartPole environment is between 188.21
and 203.41. All conditions for accuracy were met.
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5 Discussion

Through its reproductive recursive branch approach, REPNET decreased training times by 21.5%
compared to its actor-critic counterpart, and reduced the standard deviation of training episodes by
72.95%. The default version of REPNET, as well as the nonlinear reproduction threshold function and
APTA variant, were all trained one hundred times to reduce the margin of error when determining the
true population parameters. Additionally, an approximate nonlinear reproduction threshold function
can be employed to speed up training by an additional 10.24% past the default REPNET, and 29.3%
in total compared to the actor-critic method. An Adaptive Pruning Time Adjustment protocol can
additionally be put in place that decreases training times by 2.37% compared to the default version
of REPNET. That being said, it increases training times by approximately 8.41% compared to the
pure nonlinear reproduction threshold function REPNET variant with a manually set pruning time
hyperparameter. However, the reliability and reduction of potential human errors are significant, and
it should be considered as an important tool when training.

5.1 Underlying Data Structure

The data structure used in REPNET is a treelike recursive organizer. Each branch contains a
model as well as pointers to the child branches that spawn from it, with a main branch starting off the
process. Each branch is created with five instance variables - the running reward, a boolean state of
whether the branch is killed or not, a counter of the number of episodes since reproduction, a reference
to the model’s weights, and a list containing the child branches. In an update method, a new running
reward value and reference to weights is provided. The new running reward value is the running reward
reached by the model during the episode.

If the change in running reward between the previous episode and the new episode is greater than
the output of the reproduction threshold function based on the current running reward, then a new
child branch is created. This occurs by adding a new branch object into a list in the parent branch,
These child branches can be easily accessed through a whole tree recursive query that starts in the
main branch. From the main branch, it adds the pointer to each child branch into a main list which
can then be indexed through and updated accordingly. Each time a branch is updated, the branch’s
counter variable increases by one if no new child branch is created. If a new branch is created, the
counter is reset to zero. A check also occurs to determine if the counter has passed the kill time
hyperparameter, and if so, the branch is set to killed. The branch is not deleted if it has active child
branches when killed, otherwise the child branches would be isolated from the main branch. If the
branch is killed, it won’t appear in the whole tree recursive query used to update each branch and
therefore will not be updated further. After training, each set of weights from the whole tree recursive
query can be analyzed and filtered. After this process, the best model can then be selected. This
approach also allows for a large variety of approaches to the same problem, lowering the probability
of REPNET settling into local minima.
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Algorithm 2 REPNET Branch Algorithm

X = [ ] ▷ List of child branches
K =False ▷ Branch pruned or not
Creproduce = 0 ▷ Reproduction counter
Rrunning = 0 ▷ Current branch running reward

Treward ← t ▷ Threshold for the running reward
Kthresh ← k ▷ Number of iterations without reproduction until branch is pruned
T (P )← t ▷ Reproduction threshold function for creating new branches
W ∼ N(0, σ2) ▷ Initialize branch weights

▷ Reference to this model’s weights ▷ Reproduction counter
while Rrunning < Treward do ▷ Check kill condition

if Creproduce > Kthresh then
K =True

end if
▷ Update this branch

if not K then
Rrunning,W ← self.runEpisode()
Creproduce++

end if

if ∆Rrunning ≥ T (Rrunning) then ▷ If change in rrunning ≥ threshold function, create child
X.addChild(Rrunning,Wnew)
reset this branch one episode ▷ Resets W and Rrunning (and optimizer)
Creproduce = 0

end if
▷ Update all child branches

child.update() for child in X
end while
save W ▷ Communicate results to main program
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Figure 8: An example of the REPNET architecture. The X axis is the performance (running reward)
and episodes increase vertically down the Y axis.
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5.2 Weight Updates

REPNET initializes the neural network with weights in the main branch and an optimizer. To
train the network on a reinforcement learning based task, the network accesses an action space and
observation space. The actions taken in the action space must affect the observations seen in the
observation space for reinforcement learning to work. Initially, the model in the main branch is fed
the observation space as an input and makes a decision in the action space based on each branch’s
actor-critic model policy. Over the training episodes, the optimizer of choice increases the running
reward gained.

Each episode, the whole tree recursive query list is looped through and updated. For each branch
in the whole tree recursive query, the saved weight reference is assigned to the active model. The
model is then optimized and subsequently trained on one episode, and the new weights and running
reward are stored back to each respective branch. Training halts when a branch achieves the desired
running reward threshold τ , and the whole tree recursive query can return the weights and running
reward from each branch for further analysis.

5.3 Pruning

When a new branch is created, it also can be pruned due to a lack of producing child branches.
After the counter passes a hyperparameter set as the kill value, then the branch is effectively dead
(not updated anymore). This pruning process reduces the total number of branches currently being
updated, lowering computing power better spent on higher performing branches. Without it, a problem
of suitably large complexity or with a low reproduction threshold function could cause the number of
branches to increase uncontrollably.

5.4 Reasoning

REPNET works due to the evolutionary pressure it places on branches. By pruning poor performing
branches and having strict requirements for creating new branches, the best models can converge to
the most optimal solution much quicker than other approaches. The running rewards of the best
performing models then grow at a faster rate in comparison to the average performing model, causing
REPNET to reach a the running reward threshold τ in significantly fewer episodes given properly
tuned hyperparameters.

REPNET also significantly reduces the standard deviation of the number of episodes required to
train the network due to the multiple branches that increase redundancy and prevent unusually long
training sessions. A hard stop after a number of episodes of training used with the normal actor-
critic architecture is a common approach to eliminate these outliers. However, the model has to be
retrained if the hard stop is hit, causing the total number of episodes to increase significantly, minimally
decreasing the mean training times of the normal actor-critic architecture in aggregate.
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5.5 Python Implementation

5.5.1 Basic REPNET

To implement REPNET in Python, all a user is required to do is import the package, and declare
a new Repnet object.

Figure 9: An example network based on the CartPole environment that plots the running reward over
time for a basic constant reproduction threshold REPNET.

The repnet() function must have an optimizer, environment, and Tree object passed into it in
order for the proper functionality to be present. The tree object requires the pruning time hyper-
parameter and the reproduction threshold function. The repnet() function can be run to train the
network on the specified env environment object, storing the resultant running reward over time and
finalized weights into two variables for further analysis. The environment object should be formatted
according to the OpenAI Gym (Brockman et al., 2016) format.
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5.5.2 Auto-Generating Nonlinear Reproduction Threshold Function & APTA

Both the auto-generating nonlinear reproduction threshold function and APTA are powerful tools
that can significantly reduce training times and remove the subjective human aspect of setting hyper-
parameters.

Figure 10: Usage of both the APTA object and auto-generating reproduction threshold function.

To use APTA, import APTAControl from repnet.core. Pass in the starting pruning time as the
first argument and the optimal number of child branches per branch as the second argument. p, i, and
d are optional keyword arguments that control the PID adjustment. These values should generally not
be tweaked.
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5.5.3 Into the API

While the entirety of the REPNET API constructed is too long to fit into a paper, below is an
example of the Tree object used in the REPNET API:

Figure 11: The custom tree object used in the REPNET API. It stores the instance data pertaining
to the structure of the network, as well as a function to return the references to each branch end in
the tree, a function to update a specified branch based on a training session, and a function to reset
the tree, useful in case of running multiple subsequent trials. It also contains the APTA object to be
applied to each branch.
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The Branch class is instantiated in the Tree class, and collectively contains the training data for
REPNET. The Tree class then adds the recursive structure used based on the input hyperparameters,
and the Repnet class performs the recursive updates. Additional functions have been put into place
to perform statistical analysis, such as the one below:

Figure 12: A helper function to perform statistical analysis.

For those getting started with REPNET, the repnet.basic_examples sub-package has been pro-
vided to give the developer some examples demonstrating REPNET’s capability, such as the CartPole
environment. Currently, the more in-depth documentation of the API is available at txkl.gitbook.io/repnet.
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6 Conclusion

REPNET decreased the training episodes by a maximum of 29.3% compared to the standard actor-
critic approach through the recursive branch structure present in the network architecture. REPNET
can be combined with more complex reinforcement learning algorithms to yield lower training times
and help develop models quicker. This is important, as larger reinforcement learning models present
in robotics systems (Wang et al., 2022), self-driving cars, adaptive traffic signal controls (Abdulhai et
al., 2003), and much more can take weeks or months to train, and so a time reduction of any amount
is significant. Past this exploration, more research should be conducted into optimizing the APTA
protocol and combining it with different approaches such as soft-actor critic algorithms (Christodoulou,
2019).
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